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ABSTRACT: Fragment-based drug design uses data about where, and how strongly,
small chemical fragments bind to proteins, to assemble new drug molecules. Over the
past decade, we have been successfully using fragment data, derived from
thermodynamically rigorous Monte Carlo fragment—protein binding simulations, in
dozens of preclinical drug programs. However, this approach has not been available to
the broader research community because of the cost and complexity of doing simulations
and using design tools. We have developed a web application, called BMaps, to make
fragment-based drug design widely available with greatly simplified user interfaces.
BMaps provides access to a large repository (>550) of proteins with 100s of
precomputed fragment maps, druggable hot spots, and high-quality water maps. Users
can also employ their own structures or those from the Protein Data Bank and AlphaFold
DB. Multigigabyte data sets are searched to find fragments in bondable orientations,
ranked by a binding-free energy metric. The designers use this to select modifications
that improve affinity and other properties. BMaps is unique in combining conventional
tools such as docking and energy minimization with fragment-based design, in a very easy
to use and automated web application. The service is available at

https://www.boltzmannmaps.com.

Bl INTRODUCTION

In the last two decades, in silico fragment-based drug design
(FBDD) has emerged as an alternative for high throughput
screening (HTS) in early phase drug discovery and lead
optimization programs. HTS involves large-scale screening of
compound libraries but is not efficient enough to cover a large
part of the drug-like region of the chemical space. FBDD offers
numerous advantages over HTS and virtual screening (VS)
methods. These include reliably producing fragment hits that
are less complex but with high binding efficiency; straightfor-
ward modification and optimization of fragment hits to
develop drug-like compounds with favorable properties; low
molecular weight; and sampling a larger portion of chemical
space." Experimental detection of low-affinity fragment hits in
various biophysical/biochemical screening makes FBDD a
complementary strategy for structure-based drug discovery.” It
has been applied for hard-to-drug therapeutic targets where
other methods met with limited success. The adoption of in
silico protein—ligand modeling techniques, especially fragment-
based methods, has grown steadily over the last 25 years, in
both academia and industrial research projects. An online
survey shows an increasing trend of FBDD practice by
industrial as well as nonprofit users in the past 10 years.” We
fully expect the percentage of projects involving in silico
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methods will continue to increase. However, the expertise
required and the cost of simulations and tools supporting in
silico methods have been limiting. Our goal is to dramatically
change that with an innovative web application for FBDD.
Chemical fragments, as considered here, are low molecular
weight (150—300 Da) chemical components that can be
synthetically combined into larger drug molecules. They
typically have low-affinity binding at many sites yet possess
high ligand efficiency (ratio of biological activity to number of
heavy atoms). By studying how and where these fragments
bind to various sites on the protein surface, the chemist can
develop ideas for the druggability of new target proteins,
identify inhibitory sites of protein—protein interactions (PPI),
and locate hot spots supporting binding of diverse chemistry.
Off-target interactions—when a drug binds to proteins other
than those it was meant for—can cause toxicity. Toxicity is a
leading cause of attrition in clinical trials. Undesired
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Figure 1. BMaps user interface showing the 4RMG binding site, energy table, and SACP waters colored by chemical potential.

interaction at off-target sites can also be studied and optimized
by fragment-based analysis of a ligand and its constituent
fragments. FBDD has made significant contributions to the
discovery of four approved drugs and over 40 clinical trial
candidates.’™” These promising cases have compelled
researchers to explore more challengin§ aspects of protein—
protein and protein—DNA interactions.

When fragment binding poses are determined via computa-
tional methods, a key need is to evaluate and rank the poses.
Ranking of fragment poses by interaction energy or empirical
scoring usually suffers from suboptimal accuracy resulting in an
excessive percentage of false positive predictions. This
motivated us to pursue more accurate and robust techniques
such as Grand Canonical Monte Carlo (GCMC) simulations.
Such simulations offer a thermodynamically rigorous and
efficient method to derive statistical distributions of fragment
poses ranked by a binding free energy expressed as excess
chemical potential (average free energy per molecule). An
ensemble of fragment poses is generated across the protein
surface by using the Monte Carlo algorithm® which provides
comprehensive sampling. The algorithm accurately predicts a
fragment binding free energy, including entropy, from a
Boltzmann distribution as a function of excess chemical
potential. The Simulated Annealing of Chemical Potential
(SACP) technique forcefully inserts fragments into all the
binding sites of the protein. It then removes them, with gradual
annealing of chemical potential, to identify the binding sites
where fragment and/or water molecules are tightly bound.”
Thus, the combined GCMC-SACP technique provides an
approach from first-principles for generating accurate, reliable
fragment maps ranked by a free energy metric.

The GCMC-SACP technique is especially valuable for
calculating robust water maps. Water mapping tools for
predicting structured water molecules usually deploy scoring
methods, grid-based sampling, or molecular dynamics
simulation methods, with less accuracy.'” By applying

GCMC-SACP, our research group has developed a water
map tool that can discover multibody water—macromolecule
interactions and provide accurate prediction and ranking of
structured water molecules based on their free energy.

Applications of GCMC include numerous targets for drug
design by academic and industrial researchers, as recorded by
Bodnarchuk et al'' GCMC-SACP has been successfully
utilized for distinguishing hydration propensity of water
molecules in major and minor grooves of DNA,'* discovery
of a potent non-ATP p38 inhibitor,13 detecting PPI (MDM2/
MDM4-pS3), locating binding subpockets in elastase enzyme,
and accurately predicting multibody water triplet in Bovine
pancreatic trypsin inhibitor.” When the traditional FBDD
approach was not successful in designing or screening any
compounds to break the complex interactions between PCSK9
(proprotein convertase subtilisin/kexin type 9) and LDLR
(low-density lipoprotein receptor), SACP quickly located the
high-affinity binding sites in the complex PPIs between PCSK9
and LDLR. Using the insights from the calculations, we were
able to design potent, small molecule inhibitors by fragment
merging.'* Designing a small molecule renin inhibitor with
good oral bioavailability, a challenge for structure-based or
fragment-based design, was successfully carried out by utilizing
SACP augmented with the constrained-fragment annealing
(CFA) method. Many small molecule renin inhibitors were
designed, synthesized, and found to possess good oral
bioavailability and physiochemical parameters.'

Various fragment-based designing tools such as LUDIL®
CCLD,"” MCSS,"® GANDL" PRO_Ligand,** HOOK,*
UCSE DOCK,** SEED,* Skelgen,** eHits,”> BREED,*
CrystalDock,27 Lea3D,”® and FragFEATURE29 are available,
differing from each other in the type of fragments and scoring
functions used. To use fragment techniques in a simpler way,
several web services have also been developed. These can be
classified as geometry-based (e.g., HybridSim-VS,*® FragRep,”'
e-LEA3D??), energy-based (e.g., ACFIS,* FragRep,3l
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FTMap™), grid-based (e.g, FTMap), Artificial Intelligence
(Al)-based (e.g, DEEPScreen,” DeepScreening,’® Deep-
Frag’’), and docking-based (e.g, CHARMMing,>® Probis-
CHARMMing,* e-LEA3D??). Although many open source
and commercial tools exist for in silico drug design, barriers to
entry may include complexity of use, restricted access and high
cost, the need for adequate storage and compute capacity, or
having to download and configure tools. These barriers could
be overcome by integrating and facilitating the smooth usage
of the various required in silico tools in a single web
application.

To address these needs, we have developed BMaps: a
comprehensive fragment-based web application supported by a
large repository of simulated fragment binding data, a
geometric search algorithm to find the best binding poses for
compound modification, accurate water molecule mapping
technology, and a high-performance Monte Carlo simulator for
modeling protein—ligand and protein—water interactions using
the SACP technique. The web service supports computations
for docking, energy minimization, lead optimization, fragment
mapping, fragment search, hot spot analysis, and, of particular
note, water binding maps. BMaps allows users to carry out
fragment/water simulations on structures and fragments of
their choice and then apply the insights to the design and
optimization of new drug leads. This new tool brings in silico
FBDD techniques directly into the compound design and
evaluation process.

B RESULTS

The BMaps web application provides a unified platform for a
range of FBDD activities, including modeling targets,
compounds, and fragments; evaluating and modifying
compounds; running fragment and water simulations; and
visualizing simulation results and applying them to drug design.
The main components of the user interface are discussed in
this section, followed by an example workflow for reproduci-
bility (Figure 1).

A detailed technical explanation of how BMaps imports,
modifies, evaluates, and exports molecular data can be found in
Supporting Information Section 1 — Methods.

1. Visualizing and Evaluating Compound Binding.
1.1. Visualizing Protein Targets. A user can choose a target
protein from the repository of proteins with precomputed
fragment binding data, import from the Protein Data Bank
(PDB)* or AlphaFold,*" or upload their own structure
(Figure S1, Supporting Information Section 2 — User Interface
Figures). The precomputed repository includes over 550
therapeutically relevant structures which were manually
optimized and simulated with fragments. These prepared
structures each have precomputed druggable hot spots, water
maps, and more than 100 fragment maps.

If the user’s target has not yet been prepared, the user can
directly import a structure from the PDB. In the absence of a
3D crystal structure, a predicted structure may be imported
from AlphaFold, the Al-based predicted protein database, by
using its UniProt ID.** The highest-confidence AlphaFold
residues will be colored dark blue and are a reasonable
structure to design against. When users need to work with
proprietary structures, they may upload in PDB or CIF
formats.

For all imported structures, Amber force field parameters
and AM1-BCC" charges are assigned by AmberTools,** and
any crystallization artifacts, cofactors, ions, and crystal waters

are interpreted. These structures are initially devoid of
fragment binding data, so the user would then run fragment
or water simulations to get information about hot spots,
fragments, and water maps.

1.2. Adding Compounds. Compounds may be imported by
file drag-and-drop, pasting compound data into the workspace,
drawn with the onboard compound editor (2D sketcher), or
added from a user’s library at CDD Vault™® (Figure S2). If
necessary, 3D coordinates will be generated for imported
compounds. The user chooses how to position the
compounds: by aligning to a cocrystal ligand or another
compound, placing outside the protein to be docked later, or
keeping existing 3D coordinates. The compounds are
automatically prepared for energy calculations. The system
can detect steric clashes arising between the ligand—protein
system and display a warning. In this situation, energy
minimization or redocking can help find a comfortable pose.

Docking: After importing compounds, the user may dock
them against the target, specifying a grid box centered around a
crystal ligand, a hot spot, or any selected atoms. By default, the
grid box is optimally sized for the docked compound (Figure
S3), based on a technique published by Feinstein et al.*’
Autodock Vina*® is used to carry out the docking. After
completion, individual binding poses can be visualized along
with their energy values.

1.3. Evaluating Compounds. Computation of ligand
binding energy is important in guiding fragment-based designs,
optimization, and binding affinity prediction. Therefore, an
interaction energy calculation is made available for proteins
and compounds with a single click. Interaction energies are
computed with OpenMM,"” parsed into intuitive components,
and presented with our own energy calculations for desolva-
tion*® and hydrogen bonds. Energy calculation helps users
observe the effects of changes made during fragment design
and modifications. The energy window separately displays an
interaction score (combination of hydrogen bonds and van der
Waals energy contribution), desolvation cost (AAG;), stress
delta due to change in internal energy between bound and
unbound conformation, and other electrostatic contributions.
As an aid to intuition, semiquantitative assessments of
hydrogen bonds, desolvation, and hydrophobic interaction
energies are also available in the form of 3D visualizations.
After fragment modification, before-and-after comparison of
energy values and other physio-chemical properties aid in
better judgment for selecting a suitable modification. In Figure
S4, the cocrystal ligand (ligand ID: 4K6) of the factor IXa
structure (PDB ID 4YZU) has been modified with a
benzisoxazole fragment, resulting in a new compound
(4K6+benzisoxazole) with a better interaction score than the
former.

2. Applying Fragment Binding Data to Compound
Design. The availability of fragment binding data for a protein
target enables new insights for designing and optimizing
compounds.

2.1. Hot Spots. Hot spots—sites on the biomolecule
structure that support strong binding of diverse chemical
motifs—are derived by applying cluster analysis to the
simulated fragment binding data. The three principles of
cluster analysis are (i) diverse chemical fragments, (ii) strong
binding, and (iii) water exclusion (do not compete strongly
with water molecules).”* GCMC-SACP fragment maps
accurately predict the location of hot spots and druggable
sites governing various protein—ligand, protein—protein, and
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protein—DNA/RNA interactions. Our hot spot identification
technique has been successfully applied for characterizing a
number of biomolecular recognition events involving RecA,
PDF, DHEFR, Elastase, p53-MDM2, and HIV TAR’ Figure SS
depicts the hot spot residues of the SIRT2 protein along with
various fragment clusters ranked according to their average
excess chemical potential.

2.2. Water Maps. Understanding the spatial distributions
and thermodynamic properties of water molecules can provide
valuable insights into ligand binding and can motivate
compound changes that could increase affinity by displacing
a weakly bound water molecule or by avoiding tightly bound
waters. GCMC simulations are also known for accurately
predicting multibody water interactions, which is a limitation
of other water mapping technologies.*® Figure S6 illustrates the
water map and multibody water interactions around the
binding site of factor IXa (4YZU) with crystal ligand 4K6. A
semiquantitative visualization of hydrogen bonds allows
distinguishing the hydrogen bonds in terms of their strength.

The simulated waters are highlighted to indicate the cost of
desolvation. Displacing bulk water (green halos) will give an
entropic benefit. Displacing tightly bound or structured waters
(red halos) also provides an entropic benefit, but the
compound will need sufficient interaction properties to
overcome the cost of desolvation. When viewing the water
map in the full protein view, only the red halos are shown,
providing a step toward identifying water networks.

All water maps generated on BMaps prepared structures
have been run without the crystal ligand. However, it is possible
to run new water simulations with a compound in place.

2.3. Fragment Growing and Searching. Fragment data
include numerous fragment poses all around a protein surface.
During compound design, these fragment poses can be
searched to find high-affinity poses of suitable geometry for
substitution into a compound. Fragment search results are
displayed in a table with the binding score (binding free energy
metric incorporating configurational entropy and desolvation
cost) and other properties (Figure S7). Visualization of
fragment binding poses, overlapping with the compound or a
part of it, provides a clear picture to carry out fragment-based
modifications. “Grow with Distribution” displays the cloud of
simulated poses and gives an opportunity to select a pose from
a distribution with a desired excess chemical potential value.
When the user chooses a fragment to merge into the
compound, the assembly happens automatically, and the
resulting compound is brought into the workspace.

Individual fragment poses can also be brought individually
into the workspace using the “Search Nearby” feature (Figure
S8). This is similar to “Fragment Grow,” but it does not
modify the compound; it just inserts the fragment itself. For
projects involving de novo design, a Search Nearby in a hot
spot can be used as a starting point to find suitable fragment
hits, which can then be elaborated to design high-affinity
ligands.

2.4. Fragment Map Summary. This is a composite, high-
level view of all the binding data for a fragment, where the best
pose (highest affinity) is retained from a distribution with
lowest chemical potential. Summary fragment poses can be
filtered by free energy value (Figure S9).

3. Generating New Fragment Binding Data. BMaps
allows users to run new fragment simulations, so they can
apply insights from fragment binding data to their own targets
of interest.

3.1. Simulation Workflow. The protein system is first
prepared by specifying the structural features to be included in
the simulation—chains, ions, cofactors, and for water maps, an
optional compound. Then the fragments are chosen, and the
simulation job is submitted. After completion, the structure
can be loaded into the design environment, providing a
visualization of hot spots, water maps, and fragment maps.

3.2. Specifying Fragments. The decision about which
fragments to run depends on whether the objective is to
identify hot spots, to find general common fragment growing
opportunities, or to probe the binding site for specific fragment
growing opportunities. To support a wide range of uses,
BMaps incorporates several fragment collections from
literature and industry into a database of more than 4000
chemically diverse fragments, plus other small molecules. The
collections include BMaps” own fragments, “MiniFrags”S] and
“Rings in Drugs™” literature sets, and subsets of Maybridge
fragments53 and other libraries.”*™° In the “Library search”
tool (Figure S10), fragment libraries may be browsed or
filtered based on name, chemical properties, element symbols,
or specific motif.

To get started with fragment-based design on new
structures, several recommended fragment sets are provided:
“BMaps Starter Fragments”, “BMaps Clustering Fragments,”
and “BMaps Favorites.” The details of the built-in fragment
collections can be found in Supporting Information Section 3
— BMaps Fragment Listing.

3.3. User-Defined Fragments. User-defined fragments may
be configured by drawing in the 2D sketcher or by importing
an SDF file. A bioactive molecule or a compound of interest
can also be automatically broken down to generate new smaller
fragments. Fragments of interest can be grouped to create
customized fragment sets to be used for fragment searching,
modification/optimization, and running simulations. This
enables medicinal chemists to organize their fragments per
desired chemical moiety and customized features.

4. Example Workflow. The following workflow demon-
strates how BMaps can be used to generate and utilize
fragment data for hit-to-lead projects. This example concerns
PDB ID 4YZU, a crystal structure of the human factor IXa
responsible for blood coagulation. Instructions for reproducing
this workflow are available in Supporting Information Section
4 — BMaps Workflow.

Choose the simulation structure: Import the original 4YZU
structure from the PDB and stage for simulation.

Choose fragments to simulate:

e “BMaps Clustering Fragments”, for hot spots
e Water, for water map
e Benzisoxazole, for fragment growing

Run the simulation and load results: The fragments should all
finish within 12—48 h, with waters running the longest.

View hot spots and water map: The “Hot Spots” highlight
displays the hot spots determined via automatic clustering
analysis. Precomputed BMaps structures have had manual
tuning of the cluster analysis (radius, diversity, etc.). In the
4YZU case, the automatic clustering parameters find the hot
spot around the benzimidazole. These hot spots are good
places to look for compound modifications.

“BMaps Waters” button displays the simulated water map,
with waters highlighted in red (structured waters) or green
(bulk waters) to indicate the relative cost of desolvation. The

https://doi.org/10.1021/acs.jcim.3c00209
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00209/suppl_file/ci3c00209_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

Application Note

pubs.acs.org/jcim

/M Boltzmann Maps

& Protein COAGULATION FACTOR IX((4YZU)PDBB'

+ Add Molecule

Found 31 candidates for fragment growing . |l
Searched poses for 17 out of 17 total fragments £ Manage L

Binding Ligand Mol. Link

x Frag Score Effcy. Wt Type

-166 25 119 @ — k@

\

59 -c=C- \

—

NH

OH

@ (154 299 94 —C=C-
Qm 15.1 228 119 -C=C- ‘\J)
/N v
C @ -14.4 280 93 -C=C-
o
@ -14.4 280 94 -C-C-

NH.

- 138 468 58 —C=C- / 4
|
H
OH <
/ -13.1 595 46 —C=C-
NH
-13.0 442 59 —C=C-

. @000

Highlights

Draw /
Edit

Export

W

Figure 2. Fragment Grow suggests benzisoxazole is a good option to replace triazole in 4YZU. Hovering on the substitution option reveals the
position of the fragment to substitute and the very good bond angle. Simulated waters are also seen.

position, highlight color, and hydrogen bonds of binding site
waters may give new ideas to modify the ligand (Figure S11).

Use a “fragment grow”: This is to modify the compound.
When searching for fragments along the triazole vector,
benzisoxazole with a single bond link type has the top binding
score and a very good bond angle (Figure 2, Figure S11).

Minimize and compare energies: After the modified
compound has been assembled, energy minimization can find
the optimal pose and report the change in interaction energy.
When viewed alongside the ligand in the energy table, we can
see that the benzisoxazole fragment substitution has an
interaction energy score of —75.5 which is more favorable
compared to the triazole’s —67.4 (Figure S12) and would be a
suitable replacement.

Dock the modified ligand: Do this to see if the compound
changes pose. When the dock results finish and are minimized,
we see that, in this example, the top docking result has the
exact pose as the modified ligand (Figure S12).

This simple example illustrates how fragment data can be
generated and used to find compound modifications that lead
to improved energies, potency, or novelty.

M DISCUSSION

By offering an integrated web-based environment for these
powerful tools, BMaps aims to bring in silico FBDD techniques
to a wider range of researchers.

A key goal is to simplify compound evaluation workflows.
The design environment provides a single interface to visualize
a binding site, dock and modify compounds, and view
interaction energies. Backend tooling handles the data
management for the different kinds of computation—assigning
force field parameters with AmberTools,** docking via

Autodock Vina,*® energies via OpenMM,”” and fragment
simulation with our simulator. The resulting compound or
fragment data can be exported in various formats for use with
other tools. BMaps also uses interfaces provided by several
external web services. CDD Vault®® integration allows users to
transfer compounds between BMaps and their storage at CDD
Vault. Reaxys,” PubChem,”” and Pharmit pharmacophore
screening’" can all receive searches from BMaps, so researchers
can easily access information from those services.

Supplementing these compound evaluation features, BMaps
provides statistically robust and accurate water and fragment
maps, with hot spot analysis and specific fragment-based tools.
The GCMC algorithm is a thermodynamically principled way
of generating an ensemble of fragment binding poses and
ranking the distributions according to configurational free
energy. This approach is more reliable than conventional
docking or probing methods. We combine GCMC with
SACP—including an adaptive annealing strategy—to generate
fragment maps with greater efficiency and accuracy. This
enables the researcher to target a broader range of
biomolecular interactions with minimal effort.

Fragment binding data can offer various kinds of insight into
design: suggestions for starting points in de novo projects,
modifications in hit-to-lead optimization, or even hints about
the selectivity of a ligand or off-target toxicities associated with
mutations. To explore selectivity, a drug can be broken down
into various fragments, and those fragments simulated against
the structures of interest. In simulation, the fragments bind to
and thus explore different binding cavities of a protein and
show possible interactions. Having fragment maps on multiple
proteins can assist in the binding site analysis of the fragments,
giving evidence about selectivity. Moreover, selected fragments
can be analyzed around the hot spots which govern various
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protein—protein and protein—DNA/RNA interactions, to
provide important clues for mutational avoidance. Fragment
maps have been successfully applied in over a dozen lead
identification and optimization programs where novel, low
molecular weight fragment hits with <25 uM activity were
discovered by testing only 7—20 fragments. In four of the
projects, leads with <100 nM potency were identified by
synthesizing and testing only 17—40 compounds per project
(unpublished research, Supporting Information Section S —
Internal Research Summary). Small molecule renin inhibitors
with nanomolar potency and good oral bioavailability were
achieved by preparing only a few dozen compounds."’

To broadly apply these insights from fragment simulations,
BMaps offers precomputed data for over 550 therapeutically
relevant targets. For each target, protein structures were
prepared and run with 133 fragment and 3 water simulations,
and hot spots were identified using our previously published
method.*” These targets were selected from approved drugs or
clinical trial candidates obtained from fragment-based drug
discovery programs, drugs listed on the PDB* or Binding
DB®” web sites, targets being pursued by venture capital-
funded pharmaceutical and biotech companies, targets for
prospective customers, and many SARS-CoV-2 proteins. To
the best of our knowledge, no other group has developed a
public repository of fragment and water map data of such
magnitude. Until now, the best fragment maps have been
confined to proprietary enterprises, due to the various barriers
previously mentioned, but BMaps aims to democratize the
availability of accurate fragment and water maps. We will
continue to augment our repository of open access fragment
maps.

The COVID-19 pandemic situation demanded accelerated
research for discovering effective SARS-CoV-2 inhibitors.
Hence, our group generated fragment binding data for various
SARS-CoV-2 proteins on an emergency basis. In addition, a
number of commercially available sample compounds were
identified as high-affinity starting points for inhibitors targeting
the hot spots of the concerned target structures.

B FUTURE DIRECTIONS

Important next steps for BMaps include integrating tools and
techniques for free energy calculations and expanding our
capabilities for visualizing and evaluating the selectivity of
ligands over a range of targets. We will continuously expand
the fragment mapping data while making it easier to derive
useful information for designing drug leads. We hope to
continue working with practitioners to identify additional
fragment collections and other associated data that could
become valuable in expanding access to these important
techniques. Longer term, incorporating protein flexibility into
BMaps’ use of modeling tools will be important.

Bl CONCLUSION

The BMaps system, an in silico fragment-based drug design
platform, is now broadly available to the research community
through a web application backed by cloud computing. It
provides access to an unrivaled repository of fragment binding
data from thermodynamically principled GCMC-SACP frag-
ment—protein simulations, including precomputed fragment
maps, druggable hot spots, and water maps. This fragment data
help to understand the binding pocket and can motivate
compound modifications, while the integrated computational

tools help explain the energetic details of compound binding
and physiochemical properties. The BMaps platform will
benefit casual users, medicinal chemists who are new to in silico
methods, and experienced computational chemists alike.

Bl ASSOCIATED CONTENT

Data Availability Statement

The BMaps web application is publicly available at www.
boltzmannmaps.com. Visualization-only access to the 550+
precomputed structures is available without login at www.
boltzmannmaps.com/preview. This includes viewing water
maps, hot spots, and fragment summary maps, but not
computation-oriented features like fragment growing, energy
minimization, or docking. Access to all computation features is
available with an open access account, but operations that spin
up new compute-cloud resources (docking and fragment
simulations) have monthly limits. Additional account types are
available for users who wish to perform more simulations.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00209.
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